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A Molecular Dynamics Simulation Study of the
Self-Diffusion Coefficient and Viscosity of the
Lennard—Jones Fluid'

K. Meier,?> A. Laesecke,® and S. Kabelac**

Self-diffusion coefficients and viscosities for the Lennard-Jones fluid were
obtained from extensive equilibrium molecular dynamics simulations using the
Einstein plot method. Over 300 simulated state points cover the entire fluid
region from the low-density gas to the compressed liquid close to the melting
line in the temperature range 7* = Tk/e =0.7 to 6.0. The translational-transla-
tional, translational-configurational, and configurational-configurational con-
tributions to the viscosity are resolved over this broad range of fluid states, thus
providing coherent insight into the nature of this transport property. The uncer-
tainties of the simulation data are conservatively estimated to be 0.5% for self-
diffusion coefficients and 2% for viscosities in the liquid region, increasing to
15% at low-density gaseous states.

KEY WORDS: Einstein relation; equilibrium molecular dynamics; Lennard—
Jones fluid; self-diffusion coefficient; transport properties; viscosity; viscosity
contributions.

1. INTRODUCTION

The Lennard—Jones potential serves as an important reference model in
many applications of statistical mechanics. Furthermore, it is often used to
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predict thermophysical properties of simple fluids or as a building block for
intermolecular potential models of complex molecules. The knowledge of
its macroscopic thermophysical properties forms an essential basis for these
applications. Thermodynamic property surfaces, such as p—p—T or u—p-T
relationships, are now well characterized and can be readily calculated
from the latest and most accurate fundamental equation of state for the
Lennard—Jones fluid developed by Mecke et al. [ 1 ]. However, the transport
properties, self-diffusion coefficient, viscosity, thermal conductivity, and bulk
viscosity are less well understood. In previous studies, e.g., Refs. 2-8, the
uncertainties of simulation data were still up to two orders of magnitude
higher than those commonly achieved in experiments.

This paper focuses on the self-diffusion coefficient and viscosity of
Lennard—Jones fluid. One objective of this study is to explore both trans-
port properties at near-experimental uncertainty levels. Furthermore, the
subdivision of viscosity into translational-translational, translational—
configurational, and configurational-configurational contributions which
arises naturally in the time correlation function formalism is investigated
over a broad range of fluid states.

2. SIMULATION METHODOLOGY

Two approaches exist to simulate transport properties. These are non-
equilibrium and equilibrium molecular dynamics [9]. Nonequilibrium
simulations provide conceptual problems which make rigorous analysis and
interpretation of the results difficult. For example, the artificial removal of
heat from a system with thermostating algorithms [ 10 ], extrapolation of sim-
ulation results to thermodynamic equilibrium [ 11 ], and introduction of peri-
odic effects by the commonly employed Lees—Edwards periodic boundary
conditions [12] are still under discussion. For these reasons, the equi-
librium molecular dynamics method was chosen in this work. Additionally,
it allows calculation of the four transport properties, self-diffusion coef-
ficient D, viscosity #, thermal conductivity A, and bulk viscosity 7, from
a single simulation at one state point.

From equilibrium molecular dynamics simulations, transport proper-
ties can be evaluated by two different, but formally equivalent methods. In
the Green—Kubo integral method, the transport coefficients are obtained as
integrals under time correlation functions of the relevant thermodynamic
fluxes [ 9]. Alternatively, in the Einstein plot method, they are evaluated as
the long-time limit of the slope of the mean-squared displacement corre-
sponding to the transport property under investigation [13].

Here, the Finstein relations were chosen over the Green—Kubo
integral formulas because the analysis procedure was found to be easier.
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The Einstein relations are expressed as

~
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for the self-diffusion coefficient D [9] and

. V 2 3 N 2
77_,1__006kT dt<{ “Z > ; 1) vp (1) =1y iLo) Uﬁ,i(lo)}} >

=1 B=a+1 i
(2)

for the viscosity # [13]. N denotes the number of particles, ¢ is the time,
V' is the volume of the system, 7 is the thermodynamic temperature,
k is Boltzmann’s constant, and m is the particle mass. r, ; and v, ; are the
Cartesian coordinates and velocity components in the a-direction of
particle i. The sum
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is proportional to the displacement of the center of f-momentum in the
o-direction at time ¢ relative to its position at a time origin ¢,. The sums
over o and f§ take advantage of the fact that the pressure tensor is sym-
metric for monatomic fluids.

The Einstein relation for viscosity cannot be used directly [5, 14],
because it implicitly assumes continuous particle trajectories which are
unaffected by boundary effects. Since the trajectories in a finite system
simulation with periodic boundary conditions are discontinuous whenever
a particle leaves or enters the simulation box, a modification of Eq. (2) is
necessary. The difference A,4(1) — A,4(¢o) in Eq. (3) can be related by
simple mathematical manipulations to the time integral of the shear stress

A1) = Auglt)= [ gl de 4)

between time 7 and a time origin ¢, [ 13]. The shear stress itself is given by

[91]
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where Fj j; is the force in the f-direction with which particle 7 acts upon
particle j. If periodic boundary conditions and the minimum-image conven-
tion are employed in a simulation, the time evolution of the shear stresses
is, in fact, continuous. Therefore, Eq. (4) provides an indirect way to
calculate the viscosity Einstein plots. A more detailed discussion of this
issue was given by Erpenbeck in Ref. 15.

In this formalism the viscosity can be divided into three contributions.
Equation (5) shows that the shear stress consists of two contributions,
a translational contribution depending on the particle velocities only, and
a configurational contribution

Ttra, oc/S' z muzx iU L1 (6)

i=1
depending on the particle velocities only, and a configurational contribu-
tion
1 N—1 N

con o = Z z oc ijF,B, ij (7)

i=1 j=i+1
depending on the particle positlons only. If this subdivision of the shear
stress is inserted into Egs. (2) and (4) and the brackets are multiplied out,
three contributions, a translational-translational (tra—tra), a translational—
configurational (tra—con), and a configurational-configurational (con—con)
contribution to the viscosity are found. Hence, the viscosity can be written
as the sum of three contributions:

np, T)=nu(p, T)+11e(p, T)+nelp, T) (8)

In contrast to thermodynamic properties of monatomic fluids, such as
pressure or isochoric heat capacity, the viscosity cannot be divided into
pure translational and configurational parts, but also contains a cross con-
tribution #(p, T), depending on both particle coordinates and velocities.
These three contributions fulfill the limiting cases

lim ”tt(p’ T) :770(T)> lim ﬂtc(p’ T) =0, lim 77cc(,0, T) =0 (9)
p—0 p—0 p—0

as the density approaches zero, in which 74(7') is the zero-density viscosity
obtained from the Chapman—Enskog solution to the Boltzmann equation [ 16].

3. SIMULATION PROCEDURE

3.1. Simulation Details

For the remainder of this paper, reduced quantities denoted by a
superscript asterisk (*) are used [9, 14]. Equilibrium molecular dynamics
simulations were performed along 15 isotherms. All simulations were
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carried out in the classical molecular dynamics ensemble at constant
NV EP, where E stands for the internal energy and P for the total momen-
tum vector of the system. Input internal energies for a given temperature
T* = T/ke and density p* = No*/V were calculated from the fundamental
equation of state by Mecke et al. [1]. All simulations were performed with
1372 particles. The equations of motion were integrated with the velocity—

Verlet method [9] using a time step of 4r* = /e/ma* At =0.003. After an
equilibration period of up to 300,000 time steps, the actual simulations
proceeded over 1.5 to 2 million time steps. The cutoff radius rE=rc/o
depended on the density of the state point. It was set to r&=5.0 for
p*¥>10, 5.5 for 0.6 <p*<1.0, and 6.5 for p*<0.6. The usual periodic
boundary conditions and minimum image convention were applied [9].
Our computer programs are based on FORTRAN listings provided on
microfiche as attachments to the book by Allen and Tildesley [9].

The distribution of the simulated state points in relation to the phase
boundaries is given in Fig. 1. The simulations extend over a wide range of
the fluid region of the phase diagram from the low-density gas to the com-
pressed liquid close to the melting line. The 15 isotherms cover the tem-
perature range between 7* =0.7 to 6.0. Metastable superheated vapor and
subcooled liquid states were also included However, state points which
apparently lie in the unstable region were not considered. Unstable states
were identified by inspection of simulated heat capacities and isentropic
compressibilities. If these thermodynamic properties showed unphysical

10
st

B POOCOOOK X X X X X X X X X X XXX XXX XXX XXX

4 POOOOOOX X X X X X X X X XX XX XXXXXXX

OGO X XX XXX XXX KX XXXKXXX
ROOOKKK X X XX KX XXX KXXXXXX XX

2_)00<XX)OO<XXXXXX><X><XXXXXXX
XOGOORKK X X X X X X X X X X X XX XXX

T

1.2 1.4

Fig. 1. Distribution of simulated state points in the 7'*, p*-plane.
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behavior or values, e.g., either negative or very large positive values, a state
point was considered to lie in the unstable region.

3.2. Einstein Plot Analysis

The Einstein plots were calculated using separate analysis programs.
Diffusion Einstein plots were obtained from the infinite-checkerboard form
of the particle trajectories [ 15], while the mean-squared displacement for
the viscosity Einstein plots was calculated according to Eq. (4) by numerical
integration of the shear stresses using Simpson’s rule.

The slope of the Einstein plots was obtained from a least-squares fit of
a straight line to the plot. The interval for the fit was chosen individually
for the diffusion plots and the plots for the three viscosity contributions for
each simulation. By optical inspection of the plot, it was ensured that the
initial behavior was discarded and the fit was done to that part of the plot
where the straight line was evident.

4. SELF-DIFFUSION COEFFICIENT

The results for the self-diffusion coefficient are best discussed in terms
of the product D*p*, since the self-diffusion coefficient itself tends to
infinity as the density approaches zero. However, the product D*p*
remains finite and approaches the dilute gas Chapman—Enskog values in
this limit. In Fig. 2 the simulation results for the product D*p* are given
for two selected isotherms, the subcritical isotherm 7* = 1.2 and the super-
critical isotherm 7* = 3.0. Also included are literature data [2, 3, 7, 8] and
the correlation by Rowley and Painter [8]. Our data appear to be very
consistent and extrapolate well into the zero-density limit. On the isotherm
T*=1.2 a shallow minimum at the approximate reduced density p* =0.1
is observed in the gas region. The isotherm 7* =3.0, however, does not
show such a minimum. The data of Rowley and Painter also give a consis-
tent picture but are systematically lower than our data in the liquid region.
Since their simulations were performed with 256 particles and ours with
1372 particles, these systematic deviations may be due to finite size effects.
On the isotherm T* =3.0, the literature data sets of Straub [7] and
Michels and Trappeniers [2, 3] scatter more than our data. In the gas
region the Michels and Trappeniers data lie below our data. As their
simulations were carried out with 108 and 125 particles, these systematic
deviations may also be attributed to finite size effects. The correlation of
Rowley and Painter follows their data well at high densities but fails to
describe the correct physical behavior in the gas region.
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Fig. 2. Product of reduced self-diffusion coefficient and reduced density
D*p* on the subcritical isotherm 7*=1.2 and the supercritical isotherm
T*=3.0 as a function of reduced density: (@) this work; (A) Michels
and Trappeniers [2]; (V) Michels and Trappeniers [3]; (<) Straub [7];
(O) Rowley and Painter [8]; (—) Rowley and Painter (correlation) [8].

Figure 3 displays the product D*p* for all 15 simulated isotherms.
It characterizes the behavior of the self-diffusion coefficient over the entire
fluid region from the triple point up to the reduced temperature 7* =6.0.
The subcritical isotherms between 7*=1.0 and 1.3 also exhibit shallow
minima in the gas region, suggesting that the minima are real physical
effects. On supercritical isotherms the minima vanish, so that the product
D*p* decreases monotonically with density. The uncertainty of the diffusion
data is estimated to be 0.5%. These results demonstrate that molecular
dynamics is a useful tool to explore this transport property, which is dif-
ficult to access experimentally.

5. VISCOSITY

Figures 4 and 5 show the results for the reduced viscosity and its three
contributions for the same selected isotherms 7* =1.2 and 7* = 3.0 which
were discussed in Section 4 for the self-diffusion coefficient. Generally, the
viscosity data are not as accurate as the self-diffusion data. The uncertainty
of our data in the liquid region is estimated to be 2%. However, with
decreasing density the scatter of the data becomes larger, reaching 15% at
the lowest densities in the gas region.
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Fig. 3. Product of reduced self-diffusion coefficient and reduced density
D*p* as a function of reduced density p* and reduced temperature 7*:
(O) T*=0.7;, (@) T*=08; () T*=09;, (W) T*=1.0; (A) T*=1.1;
(A) T*=12; (&) T*=125; (©) T*=13;, (V) T*=15; (V) T*=138;
(X) T*=21; (X) T*=25; (+) T*=3.0; (x) T*=4.0; (x) T*=6.0.

Fig. 4. Reduced viscosity #* on the subcritical isotherm 7*=1.2 as a
function of reduced density p*. This work: (@) n*; (A) nk; (&) nE;
(M) n%. Rowley and Painter [8]: (X) #*; (—) Correlation.
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Fig. 5. Reduced viscosity #* on the supercritical isotherm 7* =3.0 as
a function of reduced density p*. This work: (@) #*; (A) nk; (®) nk;
(M) nk. Michels and Trappeniers [4]: (O) n* (A) n¥; (<) nE;
(O) n%. Schoen [5]: (x) n* Rowley and Painter [8]: (X) n*.
(—) Correlation.

At high densities the viscosity is dominated by the con—con contribu-
tion n%, where n{ and ¥ contribute little to the total viscosity. Along an
isotherm 7% increases exponentially with density. The tra—tra contribution
n& yields the largest contribution to the total viscosity at low densities in
the gas region and decreases with density. The tra—con contribution #
shows a different behavior. At gaseous densities it increases, reaches a max-
imum at intermediate densities, and decreases in the high-density region.
On the subcritical isotherm 7*=1.2, the maximum is partly covered by
the two-phase region. The tra—con contribution 7 shows the largest scatter
of the three viscosity contributions and appears to be the most difficult to
simulate accurately. At liquid densities, our viscosity data show less scatter
than the data of Schoen [5] and of Rowley and Painter [ 8]. Michels and
Trappeniers [4] investigated the behavior of the three viscosity contribu-
tions on supercritical isotherms up to the reduced density p* =0.3. On the
isotherm 7'* = 3.0, their data are more consistent and systematically lower
than our data. However, they used different simulation parameters: a cutoff
radius of r&=2.5, 108 particles, and longer simulations, up to 12 million
time steps with a length 4¢=0.004. The systematic deviations are due to
the tra—tra contribution, which yields the largest contribution to the total
viscosity. The correlation of Rowley and Painter [ 8 ] follows our data well
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at high densities. However, this is surprising, since it was fitted to only their
own data. In the gas region, our data lie above the correlation on both
isotherms, suggesting that the correlation predicts gas viscosities that are
too low.

Figures 6 to 9 give an overview over all 15 simulated isotherms for
the total viscosity #* and the three contributions 7, &, and nX, respec-
tively. The total viscosity shows the typical behavior observed for real
fluids. It increases with temperature in the gas region, while it decreases
in the liquid region. The isotherms intersect at a reduced density of about
p*=0.75. The tra—tra contribution 7% increases with temperature over the
whole density range from the low-density gas up to the compressed liquid.
Due to larger uncertainties, the tra—con contribution isotherms are not
as clearly distinguishable as for the tra—tra contribution. However, two
trends can be observed from Fig. 8. This contribution also increases with
temperature over the whole density range, with the maximum being shifted
to higher densities as the temperature increases. The con—con contri-
bution #¥ depends only weakly on temperature up to reduced densities
of about p*=0.7. From this point, the isotherms split and diverge. The
splitting occurs in the same density range where #{ isotherms exhibit their
maxima.

12
11
10

*

n

0@ 4+ M W M 0o N ®
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Fig. 6. Reduced total viscosity #* as a function of reduced density p*
and reduced temperature 7*. Symbols the same as in the legend to
Fig. 3.
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Fig. 7. Reduced translational-translational contribution #{ to viscosity
as a function of reduced density p* and reduced temperature 7*. Symbols

the same as in the legend to Fig. 3.
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Fig. 8. Reduced translational-configurational contribution #& to vis-
cosity as a function of reduced density p* and reduced temperature 7*.

Symbols the same as in the legend to Fig. 3.
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Fig. 9. Reduced configurational-configurational contribution #X to
viscosity as a function of reduced density p* and reduced temperature
T*. Symbols the same as in the legend to Fig. 3.

6. CONCLUSIONS

This paper gives an overview of our project to determine the self-diffu-
sion coefficient and viscosity of the Lennard—Jones model fluid with high
precision by equilibrium molecular dynamics simulations. By using more
particles, larger cutoff radii, and much longer simulations than are con-
sidered in conventional simulation work, both transport properties were
explored at near-experimental uncertainty levels. The new simulation
results for both transport properties are substantially more accurate than
in previous studies. The behavior of the three viscosity contributions #,
ne, and n¥% is characterized over a broad range of fluid states and not only
at selected state points. The results of this project will be published in more
detail including tabulated simulation data in subsequent papers.
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